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INITIALIZATION BY COMPATIBLE BALANCING
Michael Ghil

Abstract

The initialization problem is defined as the problem of obtaining
the initial data that are required in order to solve a well-posed initial-
and-boundary value problem for the equations of large-scale dynamical
meteorology. In our treatment of the problem we assume that complete in-
formation is available at a given instant on the atmospheric temperature
and surface-pressure fields, as well as on their time derivatives; we
study a procedure for computing the horizontal velocity field at the in-
stant of interest based on the assumed information,

This procedure relies on the exact mathematical treatment of the
differential equations of atmospheric motion, rather than on perturbation-
type or numerical methods; therefore the initial state given by the known
temperature field and the derived velocity field should be fully compatible
with the equations describing the time evolution of the system and not give
rise to spurious noise components of the motion.

In the case of an atmospheric model governed by the linearized shallow-
fluid equations, the diagnostic equations obtained by our procedure for the
wind field are of uniformly elliptic type and an error analysis relating the
accuracy of the results to that of the data is possible. In the case of a
model described by the full non-linear shallow-fluid equations, the diagnostic

equations we obtain for the wind field are of mixed type and related to the




classical balance equation; the ellipticity condition we derive for the former

is similar to the well-known ellipticity condition for the latter. The important
feature of this condition is that it does not depend on the partial derivatives
of the horizontal velocity components. Firally, in the case of & primitive-
equation model our diagnostic equations for the horizontal velocity field are
similar to those for the non-linear shallow-fluid model, though somewhat more
complicated. Their type is discussed, and a general condition to determine
ellipticity is -given. This condition does not appear to be so easily reduced

to a simple form, independent of velocity derivatives, as in the previous case.
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1. Introduction

One of the main difficulties in improving short-term weather fore-
casting based on numerical integration of the primitive equations1 is
the lack of initial data. The primitive equations in cartesian coordi-
nates, say, form a hyperbolic system of first-order partial differential
equations (PDEs), and weather prediction involves solving numerically an
initial-and-boundary value problem for these equations. We shall notdiscuss
here the boundary conditions to be imposed at the upper and at the lower
boundary of the atmosphere. The required initial data at a given time
t = to’ to be specified throughout the global atmosphere, are the hori-
zontal velocity components u, v, the density p and the temperature T.
The complete and sufficiently accurate specification of such initial
data constitutes the initialization problem.

Thus the initialization problem naturally falls into two parts:

(i) the completeness, and (ii) the accuracy of the initial data. In
discussing the different aspects of this problem, we shall try to dis-
tinguish between (a) the physical behavior of the atmosphere, (b) the mathe-
matical (differential) models describing this behavior, and (c) the numerical
(difference) models used to approximate a given mathematical model.

The question of accuracy of the initial data is particularly critical
because of the extreme sensitivity of presently available numerical models
to changes in initial data. In other words, small relative errors in the
initial data result within a few hours of simulated time in large relative
errors in the solution (Charney et al., 1966). These errors manifest
themselves mainly in a form identified as the numerical counterpart of

fast inertia-gravity waves (Hinkelmann, 1951, Charney, 1955).

1For simplicity we shall call primitive equations the Euler equations of
fluid dynamics, with the vertical momentum equation replaced by the
hydrostatic assumption, and with the energy equation in its isentropic
form.




In the atmosphere inertia-gravity waves (IGWs) are present only N
with small amplitudes, because of the mechanism of geostrophic adjust-
ment; this adjustment results in a so-called balanced state, in which
slow, meteorologically significant, motions are predominant. Therefore,
it was thought that a balanced numerical solution with smaller IGW-1ike
errors could be produced by requiring the initial data to satisfy a time-
independent compatibility condition approximately expressing the property
of balance. Thus the idea of a time evolution free of large inertia-
gravity waves was tied to that of an instantaneous relation, containing
no time-derivatives, between wind field and mass field; this relation was
called the balance equation.
A number of forms of this balance equation (Ellsaesser, 1968, Haltiner, 1971,

1 ]
pp. 60-61) have been formulated and used in the initialization of primitive-equation

models. Their use did not prevent, however, the appearance and exagger- )
ated growth of IGW-like components of the solution in the numerical inte-
gration of these models (Nitta and Hovermale, 1969, Morel et al., 1971).
The mathematical reason for this is the fact that all these forms of the
balance equation involve in their derivation from the equations of motion
the neglecting ‘of certain terms; therefore such a balance equation is con-
sistent with the equations of motion only in an approximate, asymptotic
sense, rather than in an exact one.
As synoptic balancing did not seem to be successful with primitive-
equation models, a form of dynamical balancing was proposed by Nitta and
Hovermale (1969); the basic idea was to reduce the amplitude of spurious
IGW-1ike phenomena in the model by using the dispersive and dissipative
properties of the model itself, i.e., let the model simulate the geostro-
phic adjustment process in the atmosphere. A related idea was put for- v
ward by Charney et al. (1969) for using the time-dependent model to solve

the completeness-of-data question.
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Indeed, no observational system in use at present can supply at a
given time (synoptically) all of u, v, p, T over a uniform grid, like the
ones used in general circulation models (GCMs). However, it seems reason-
able to expect through the use of satellite technology better data
coverage for temperature than for winds. The suggestion then, following
some ideas already found in Smagorinsky and Miyakoda (1969), was to use
the history of the temperature field T and that of the surface-pressure
field Pg from t=t0 to t=t1 in order to infer the horizontal wind field
(u, v) at t=t,. In fact, in a primitive-equation model T and Ps
completely determine all thermodynamic variables and thus the mass field,
since the equation of state and the hydrostatic equation immediately yield
p and p everywhere.

The concrete procedure proposed by Charney et al. (1969) was to
start the numerical integration of the equations with the "correct" tempera-
ture data and with velocity data approximated by some other method; then,
at given time intervals, to replace the computed values of T by the
"correct" ones, ji.e., to "update" T. However, in most experiments with
this method, "correct" values were taken from a "control run", because of
the unavailability of real data with the required uniform distribution.

The difficulties encountered with this technique and variations
thereof (Morel et al., 1971, Williamson and Kasahara, 1971, Mesinger, 1972)
were the following: (a) decrease of the initial root-mean-square error
in (u, v) to a non-zero asymptotic value, (b) achievement of this de-
crease within periods not shorter thah two days, and (c) slower decrease
or actual increase of the rms error in (u, v) when using temperature data
from a control run of a different GCM or real data. Better results were
obtained recently by certain improvements of the updating technique such

as local balancing (Stone et al., 1973, Kistler and McPherson, 1975) and
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relaxation (Davies and Turner, 1975), but the basic problems remained.
The numerous and varied contributions in this field have been reviewed
by Kasahara (1972), Jastrow and Halem (1973), and most recently and com-
pletely by Bengtsson (1975).

In view of the difficulties encountered by the non-synoptic tech-
niques (updating, four-dimensional data assimilation) as well as by
the traditional synoptic techniques (approximate-balance equations, ob-
jective analysis), a different approach to the initialization problem
ijs attempted here. Indeed, if the primitive equations are a good mathe-
matical model for large-scale phenomena in the atmosphere, then there
ought to exist initial states (u, v, o, T) lt=t which characterize solu-
tions of the model distinguished by sma]]-amp]?tude IGW components;
and a similar statement has to hold for the numerical models approximating
the mathematical one. One should then be able to describe such initial
states by equations derived from the model itself, without any approxima-
tions.

On the other hand, it should be possible to obtain in the same con-
text diagnostic equations which determine the horizontal velocity field
(u, v) from the mass field and a number of its time derivatives. This
would seem to be the rigorous mathematical expression of the ideas behind
the updating techniques. These two points of view are concerned with
the questions of accuracy and of completeness of the initial data respec-

tively; their combination leads to the search for equations, derived from

those of the model, in which no time derivatives of the velocity components
u, v appear. From these equations u, v can then be determined at any
time t=t0, given the thermodynamic variables of state T, p, p appearing
in the equations, and as many of their time derivatives as required. These

time derivatives can be considered to play here the role of the time history
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of the variables concerned, if we think that t; has been let to tend to
t0 in an updating prbcess.

This approach is also related to the more elaborate diagnostic equa-
tions proposed by Fjﬁ%toft(l962), Hinkelmann (1962) and Hollmann (1966)
among others as an improvement on the classical balance equation. The
latter is essentially based on the assumption that d(ux+vy)/dt is negli-
gible with respect to other terms in the equétion and is therefore set
to zeroz; the later, more sophisticated diagnostic equations referred
to were all based on assumptions about the vanishing of higher derivatives
of the horizontal velocity field or of its divergence, such asda(u,V)/dt2
or dz(ux+vy)/dt2 ,as well as combinations thereof and of the original
assumption that ux+vy itself or d(ux+vy)/dt are zero? Hence these
diagnostic equations were in a sense similar to the different closure
approximations of turbulence theory.

We indicated already how our procedure can be thought of as the
Timiting result of updating over a time interval which tends to zero.
In a similar vein our diagnostic equations can be viewed heuristically
as the 1imit of a sequence of closure-type equations when the order of
the derivatives assumed to be zero tends to infinity.

The advantage of a zero-length updating interval is that the actual
solution does not change during the updating, so that the asymptotic error
in updating should be reduced to zero. Similarly, the advantage of
closure at infinity should be the lack of an initialization shock, i. e.,

the presence in the time-dependent solution of only the amount of inertia-

gravity waves actually attributable to the solution frozen as it were at

2 Here x, y are cartesian horizontal coordinates and d/dt is horizontal
material derivative, d/dt=3/5t+us/ox+va/ady

3 Miyakoda and Moyer (1968) proposed a dynamical implementation of such

a synoptic condition.
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the initial instant, without spurious amplification due to incompatibility
between the measured and the derived quantities in the inital state. ¥ndeed,
since our diagnostic equations are derived directly from the equations
governing the time evolution of the system, without additional assumptions,
the dynamical and the thermodynamical quantities in the initial state are
compatible with each other with respect to their evolution in time exactly,
and not only approximately so.

In Section 2 we derive such diagnostic equations for the shallow-
fluid equations linearized around a state of rest and we give bounds on
the errors in the derived velocity field in terms of the errors in the
measured geopotential field. In Section 3 we derive the diagnostic
equations for the full nonlinear shallow-fluid equations and we analyze
the type of the equations obtained; a simple ellipticity condition,
which does not depend on the space derivatives of u,v, is given. We
also point out the relationship our results bear tothe classical balance
equation and its well-known type analysis. The results of Section 3 are
jmmediately applicable to the primitive equations in isentropic coordinates,
which are useful in short-term meso-scale prediction. In Section 4 we
show how to extend the results of Section 3 to the Euler equations and to the
Navier-Stokes equations, and then we address ourselves to the primitive
equations in pressure coordinates. The type analysis of the diagnostic
equations obtained is more difficult because of the equations being more
complicated, but mainly because of three, rather than two space variables
being invoived. Still the ellipticity condition can be formulated quite
generally, but no simple form of this condition, which does not involve

space derivatives of u, v, could be found.




2. Diagnostic Equations for the Linearized Shallow-Fluid Equation Modei

The simplest model whose solutions exhibit behavior similar to the large-
scale motions of the atmosphere is the model governed by the linearized shallow-

fluid equations. In a rotating Cartesian x,y - coordinate system these equa-

tions are
(1a) u + ¢, - fv= 0,
(1b) 2 fu =0,
(1c) oy + @(ux+vy) =0,

when the linearization is performed around a state of rest. Here u, v are
the velocity components in the x,y directions respectively and f is the
Coriolis parameter which determines the influence of the rotation on the so-
Tutions. For cnnvenience the geopotential ¢ 1is introcuced instead of the

height of the free surface h by

¢ = gh,

with g the acceleration of gravity; the equilibrium value of the geopotential

is
d = const.

We note that in this model the assumption that the mass field is known is equi-

valent simply to assuming that we know ¢ = ¢(x,y,t), and hence $p> byy 35 well.
Our purpose with respect to system (1) is to obtain two equations in which

Ups Vy do not appear, although ¢t’¢tt may. Clearly (1c) itself is such an

equation, and only one additional eauation satisfyina the reauirements has to

be defived. We proceed to do so by differentiating (1lc) with respect to t, (la)

and (1b) with respect to x,y, and obtain




(23) - fv = Oa

+
utx ¢xx X

(Zb) + fu_ = 0,

+
Viy T oyy T Ty

(2¢) + @(uxt +v,.) =0,

Pt yt

where we assume for simplicity that f = const., as we shall throughout this

section. Substituting u , and Vot from (2a), (2b) into (2c) yields

(3) of (v-u.) - o(o, *o, ) + ¢y =0

y yy

Hence (3) together with (1c) form a system of two first-order partial differential

equations for u,v,

(43) UX + v "Cbt/@,

(4b) u_ - v

y = Ve T (byqmens)/of,

where A is the two-dimensional Laplacian operator,

Ap = ¢, t O

XX yy’

Thus (4) s the required set of diagnostic equations for the model whose time
evolution is given by the prognostic equations (1). We notice that the instan-
taneous (synoptic) determination of u, v at t = t0 from (4) actually requires
only a knowledge of ¢t’¢tt at t = to’ rather than the whole time history of ¢ from
some t = t1<t0 until t = ty* the equivalent of the time history in this formula-
'tion would be a knowledge of all the time derivatives of ¢.

System (4) for the functions u, v 1is elliptic, j.e., it has no real
characteristics. In fact it is just a set of inhomogeneous Cauchy-Riemann equa-
tions for the functions v, u; by cross-differentiation these equations lead

to a Poisson equation for either u or v. A well-posed problem for (4) would
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be the Dirichlet problem. This means prescribing u say on a closed contour 3D ;
then v 15 determined also up to an additive constant, the value of which can
be given by prescribing v at some point on the contour 3B or in its interior,
D(e.g., Miranda, 1970, p. 265 ff.), Thus, within the framework of model (1), solving
the Dirichlet problem for system (4) solves the completeness-of-data problem. |
We turn now to discussing the accuracy problem for the model at hand.

It is well known (Hinkelmann, 1951, Morel et al., 1971, Williamson and
Dickinson, 1972) that system (1) has three independent plane-wave solutions, one
corresponding to slow Rossby waves, the other two to inertia-gravity waves pro-

pagating in opposite directions. In the case we treat, in which the unperturbed

velocity is zerol, the Rossby mode is stationary and the IGWs have phase velocity
¢ = +(k20+F2)%/k,
where k = (kl, k ) 1is the wave vector and
2 2 2
k =k +k

Any solution of (1) can be represented by a series expansion with respect to 5
in these plane waves.
Let the solution vector w = (¢, u, v) of (1) be decomposed into its

Rossby component w and its IGW component w',
(5) W W+w,

with w stationary, that is, WtEO. The Rossby component & satisfies

(') fu=-¢, fv=29

Y x’

i.e., it is geostrophically balanced; it also satisfies (4) with 3/3t=0.

1 Notlce that linearization around a solution with velocity (U, V) satisfying
fuU = fv = ®# const., would still allow us to eliminate the time deriva-
tives o¥ u, v 5y cross-differentiation in (1). However second space derivatives of
u, v would then appear in the equation that corresponds to (4b), making the
analysis more difficult. Similarly if f depended on y, say, a term f u/f
would appear on the right-hand side of (4b), again complicating the ana]ys1¥
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We have already seen that u, v can be determined in a domain D by
solving (4) when 0s0ps0py are given in D and u, v are given on its boundary
30. Now we want to show that actually u, v can be determined with prescribed
accuracy, even when the data ¢’¢t’¢tt in D and u,v on 3D do not corres-
pond to a solution w in geostrophic balance. We start by pointing out the re-
lationship between geostrophicity throughout D and geostrophicity on the boun-

dary 3D.

Notice first that the most general solution of (4) which corresponds to a

stationary solution of (1) will satisfy

(6a) u, t v, =0

(6b)

<
]

=
0]

Ay,
where x = ¢/Ff is a known function. The solution of (Ba) is

(7) u = -wy, VU,

with ¢ an arbitrary, twice continuously differentiable function. By (6b)
{ has to satisfy
(8) Afg-x) = 0
Hence,if ¢ satisfies the Dirichlet boundary condition
v =x on 3D,

then

Similarly, if ¢ satisfies the Neumann boundary condition

(9) 3. = 3.x on 2D,
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and n 1is the unit (outer) normal to 3D, V the gradient operator, then
(10) P = x + const. in D.
But we have from (7) that
9 = ne(v, -u)
so that (9) becomes
(9') n-(v-xx, 'U'Xy) =0 on D.
The simplest particular instance of (9') is

(9") U= -Xys VT Xy on 3D;
in fact it is the only one. Indeed, we saw that equation (8) with boundary con-
dition (9) has the solution (10); furthermore, (10) and (7) imply

(11) U= xy, VT X in D. »

Hence we conclude, by a continuity argument, that (11) implies (9"), i.e., (9)
implies (9").

Summing up our discussion of system (6), it is clear that its most general
solution, whether it satisfy Dirichlet or Neumann boundary conditions, is geo-
strophic in D if and only if it is geostrophic on 23D. Let us now return to
the decomposition (5), where in the sequel w will be taken to stand for a
solution of (1) corresponding to initial data obtained by solving the diagnostic
system (4). Refine the decomposition for this w as

(5') W=wW+ Wy ¥ Wo,
which is equivalent to writing

WS Wyt W,
Here w is the geostrophic or Rossby component of w as before, Wy is the
deviation of w from w due to departure from geostrophicity in the boundary con-
ditions of (4) and Wy js the deviation due to departure from geostrophicity in the
right-hand side of (4). Further on we shall make these definitions precise, and

in the process show how to obtain w in (5').
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We start by observing that, if a function p can be identified as
the geopotential ¢ 1in a solution w = (¢,u,v) of (1), p =¢, then p has to
satisfy

(12) a/at{ 3%/0t? - a(a%xP+a%/0y?) + F21p = 0
(e.g., Courant and Hilbert, 1962, pp. 14—15)2. Such a function p will be
uniquely determined by (12), provided initial data o, PyaPtt are prescribed
at t = t.. The general solution of (12),1ike that of (1),can be expressed as
an infinite sum of plane waves of three types, one Rossby mode and two inertia-
gravity modes.

Now let ¢,¢t be given in D at t =1t , with ot # 0, ¢tt #0

byt 0

in general. Solve (12) with

o*/atkp = o%/atke, k = 0,1,2, at tet..
Represent the solution

o = ¢(x,y,t)
by its plane-wave decomposition, and eliminate the IGW terms by setting their
coefficients equal to zero. The new function with only Rossby components in
its plane-wave expansion is ¢; in particular we have
3, =0, 8, =0 at t=tg,

since ét £ 0. The physical interpretation is that ¢ - ¢ results from
measurement errors of ak/atk¢ at t = t,. In the final Section we shall

discuss how to obtain from actual observations in an optimal manner.

Ots Ot
More generally, we might desire to reduce I1GW terms to a realistic size,
rather than eliminate them completely. It suffices then to multiply their
coefficients by suitably small numbers, instead of setting them to zero. We
shall call ¢ modified by such a filtering procedure $ 3 & is thus a particular

case of ¢.

2 Here p is not density, which does not appear in this section.
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We are now ready to define Wy and Wo precisely and to compute w.
Clearly w is the solution (¢,u,v) of (1) with $ obtained by the proce-
dure outlined above and with

u = -5y/f, vV = éx/f in D.
Indeed, we have shown in the aalysis of system (6) that its solutions, i.e.,
the solutions of (4) for which ¢t = ¢tt = 0, are geostrophic in D if and only
if they are so on 3D. Notice that w is different from the solution Q,

say, of (1) with initial data

>

;|t=to (030 /£204/ )] g -
In fact w 1is not stationary and will not remain geostrophic unless
¢t = ogg = O

According to our heuristic description of Wy and of W, it also becomes
clear now what their definitions should be:

w; 1s the solution of (1) with initial data (O,ul,vl)[tzto, where

(ul,vl)jt=t is the solution of (6) with homogeneous right-hand side (RHS),
)

120, and with boundary conditions
(13) up = u+ éy/f, V=V o- éx/f on 3D,

u,v, being the values actually measured on 03D;

W, 1s the solution of (1) with initial data (¢-$,u2,v2)|t=to’ where

st
tto

instead of ¢ on the RHS and with homogeneous boundary conditions

is prescribed and (uz,vz)]t=t is the solution of (4) with ¢-¢
0

u2=0, v2=0 on 9D.

As we saw in Section 1, the situation which more closely resembles that
of the atmosphere, and which we expect therefore in a primitive-equation model,
is the présence of small-amplitude IGWs rather than their total absence. Hence
we might not want to use W, which contains no IGW components at all, but a

suitably modified w with realistically small IGW components. It is in
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~

discussing such a W that the definition of Wy and of w will prove useful.

2
The first step in obtaining W, that of modifying ¢, has already been
described in our discussion of equation (12); it essentially concerns the reduc-
tion of the size of Wo. The second step is to modify the boundary conditions

for (ul,vl)lt=to so that, for a given >0, the inequalities

(13") !ullfe,lvllfs on 3D
hold at t = to- Call the solution of (6) with x=0 and boundary conditions
thus modified (83,91). By the maximum principle for the Laplace equation
(Courant and Hilbert, 1962) the inequalities (13') imply

(1) e, [V] s inD.
This is a limitation on the size of Wl = (o,ul,vl) at t=t , where
(ul’v1>{t=to B (81’31)°

Denote by (82, 32) the solution of (4) with ¢-¢ instead of ¢ on the

RHS and with homogeneous boundary conditions. The theory of elliptic PDEs
(Miranda, 1970) provides us with certain bounds on (82,32) in terms of bounds
imposed on $-$ at t=t0; these so-called error estimates are similar in
character to and are partly derived from the maximum principle. Furthermore,
the theory of hyperbolic PDEs (Courant and Hilbert, 1962), applied to system (1),
states that under suitable technical restrictions there are bounds on the size
of Wl and Wz at any time t in terms of their size at the initial time
t=t_  (energy inequalities). Thus, ultimately, there are bounds on W-w at

)
any time t in terms of the bounds at t=t  on -0, 6> $tt in D and on

G+$y/f, V-@X/f on aD.
This éomp]etes the discussion of the accuracy question for our initializa-

tion by compatible balancing in the case of a linearized shallow-fluid model.
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(=]
-

The solutions of this model have more features in common with the large-
scale motions of the atmosphere than those of the model treated in the previous
section. The model also exhibits some of the behavior associated with the
nonlinearity of the primitive equations; it is considered useful in many
ana]ytica] and numerical investigations which aim at applications to the

primitive equations. The governing equations are:

(1a) up + uu + vuy to, - fv=0 |,
(1b) Ve tuv, 4 vvy + ¢y +fu=0 |,
(1) oy *+ uoy F v +oluy ) =0,

where the notation is that of Section 2!. However, for the sake of complete-

ness, we shall let f , in this section only, be a function of y ; not to include

x-dependence as well reflects the customary convention of considering the x-axis to

be locally tangent to a circle of latitude, the y-axis to a circle of longitude.
Again we want to derive two equations for the velocity components u, v

in which their time derivatives do not appear, although time derivatives of the

geopotential ¢ may be present; our standing assumption is that ¢ is known together

with-its time derivatives. Equation (lc) satisfies these requirements, as (2.1c)

did before, and one more such equation has to be found. It was shown in Ghil (1973)

that the straightforward generalization of the procedure used in the previous section

to obtain such an equation fails. A slight modification thereof, however, works,

as we shall show presently. The modification is based on the idea that,viﬁfa

nonlinear model, the material derivative d/dt is the analog of the partial de-

rivative 3/3t in a linearized model.

For notational convenience we introduce ¢ = logd , which is justified

'We shall start the numbering of equations afresh in each section, and make
cross-references to equations in a different section by prefixing the section
number, e.g., the linearized shallow-fluid equations will be referred to hereafter
as system ?2.1)
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since ¢ is strictly positivef and the divergence
§ = uy + vy
In this notation {(lc) bécomes
(1c?) § = - do/dt ,
where d/dt is the two-dimensional material derivative,
d/dt = 3/3t + ud/dx + va/ody.
Differentiating (la) with respect to x, (1b) with respect to y and adding
we obtain the familiar divergence equation, which we write as

2

_ 2
(2) - dé/dt = u, + 2uv, + v+ f(uy-vx) + fyu + Ad .

y X y
But from (lc') we can express d&/dt 1in (2) also as

(3) - d&/dt = d@t/dt + ud@x/dt + vdéy/dt + @xdu/dt + @ydv/dt s
where we use the fact that the material derivative d/dt obeys the product

rule for two arbitrary scalar functions G,H,

d{GH)/dt = HdG/dt + GdH/dt
Expressing du/dt, dv/dt with the aid of (1a), (1b), equation (3) becomes
(3') - d§/dt = @X(fv-¢x) + @y(-fu-¢y) + d@t/dt + udd /dt + vd@y/dt .

which we can now combine with (2) to yield the desired second diagnostic equation.

We thus obtain the diagnostic system

+ = - - -
(4a) u, + v o u - oV -0 ,

y y t

2 2 _
(4b) ug + 2uyvX + vy + f(uy-vx) = - fyu + f(@xv-Qyu)
+ d@t/dt + ud@x/dt + vd®y/dt

- (8200200 - 86

’The ¢ just defined bears no relationship whatsoever to & = const.
of Section 2.
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for the model whose time evolution is given by the prognostic system (1).
The right-hand side of (4) contains u,v, but only in non-differentiated

form. In the case in which
§ =d§/dt = 0
system (4) is easily seen to be equivalent to the classical balance equation

2

(5) 200,y ~Vybyy) A0 = Fuy - 80

XX'yy

where ¢ is the stream function,
(6) u=-y

Equation (5) can also be interpreted as determining the non-divergent part of
the horizontal velocity field in a primitive-equation model, where the non-
rotational part of the field is much smaller and can be neglected, along with
other terms in the horizontal divergence equation of such a model (Haltiner,
1971, p.60).

Notice, however, that (5) fails to yield a good approximation for the
horizontal wind field in low latitudes, where some of the assumptions made in
deriving it (especially quasi-geostrophicity and small divergence) are not
justified any longer. There have been different suggestions on how to cir-
cumvent this problem, such as taking ¢ to be given in the topics and solving
(5) for ¢ there (Houghton and Washington, 1969). Still we believe it is a
definite advantage of (4) that no assumptions whatsoever were made in deriving -
it from (1); therefore its solution (u,v)|,_, should provide an initial state
that is entirely compatible (in the sense desgribed in Section 1) with the time
evolution of the solution (¢,u;v) of (1), independently of latitude.

In order to solve (4) for (u,v) we still need to determine appropriate

boundary conditions. No general theory of well-posedness exists for such
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nonlinear first-order systemsj but the known results for linear systems sug-
gest that the nature of appropriate boundary conditions depends on the type of
the system. We saw in the discussion of (2.4) that the Dirichlet problem is
well-posed for linear elliptic systems. For hyperbolic systems the number and
nature of the data to be prescribed along the boundary varies from one piece
of boundary to another, according to the geometry of the domain and of the
characteristics (Kreiss and Oliger, 1973, pp. 64-70). Finally in connection
with systems of mixed type (i.e., systems which have different type in different
parts of the domain considered) relatively little is known; however, some
advances have been recently made for linear and quasi-linear systems encoun-
tered in the field of transonic flows (Jameson, 1975): we shall have to
return to this topic at a later point of our discussion.

Thus our next task is to determine the type of system (4). We recall

first the familiar theory for the single nonlinear equation of second order

_ 2 .
(7)) F(u) = EQy by b)) + by, + 2By, + Ch + D=0,

where the coefficients A,B,C,D,E are (continuous) functions of x,y,w,wx,wy .
If E 20, then {7) is a Monge-Ampdre equation; it was most recently discussed
in the meteorological literature by Houghton (1968). Clearly (5) is a special
instance of (7) with

8 =2, A=C=f, B=0, D=f - A
(8) E=2, A=¢C 0 ywy¢>

The meaning of characteristics for such a nonlinear equation is explained
by Courant and Hilbert (1962, pp. 418-421) in terms of the solvability of the

Cauchy problem. Given any second-order nonlinear PDE,

(7) F(X,yaw,wx,wy,wxx,wxy,wyy) =0,

its characteristic lines

¥(x,y) = const.

3

A system Tike (4) is in general not equivalent to a single second-order
equation (Courant and Hilbert, 1962, pp. 12-14). Furthermore, to treat a higher-
order equation is not necessarily more advantageous than to treat a first-order
system. In any case, we have not found such an equivalent single equation.
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are .given by

2
(9) F ¥S+F vy +F ¥ =0
bex X By XYV

Yy
Ellipticity is defined as the nonexistence of real characteristics; hence the
condition for (7') to be elliptic is
(10) ? = F2 -4 F, <0
b Vox Wyy :
The interesting feature of (7{ is that (Courant and Hilbert, 1962, pp. 495-499)

the discriminant Az is independent of the highest derivatives,

.. 2 _ 2
(10*) A" = (B-way) - (A+Ewyy)(C+wax)
- nl 2
= B - AC - E{zswxy + wax + cwyy + E(wxxwyy-wxy)}
2

B® - AC + DE

Combining (10) and (10') yields the ellipticity condition

2

(11) B - AC+DE <O

for (7); by (8) this becomes

(1) 2s-f,) + FE> 0,

which is the well-known ellipticity condition for equation (5). We conclude
this discussion of (7) by mentioning that, given (11), one can show essential
uniqueness (viz.,existence of at most two so1utions, each with different geo-
metrical properties: Rellich, 1932, Courant and Hilbert, 1962, pp. 324-326),
and also existence (Pogorelov, 1964, pp. 88-92) of solutions satisfying boundary
conditions of Dirichlet type.

After these remarks on (7), we are ready to proceed with the discussion

of the first-order nonlinear system (4), which we write for convenience as

(12&) D(WX,Wy) = d(X,y,W) s

-

(12b) E(wx,wy) = E(X,y,W)
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where now w = (u,v) . In order to stress further the analogy with (7'),
(12) can be written even more concisely as

1 -
(12') F(x,y,w,wx,wy) =0 ,

where F = (D-d,E-e) . The generalization of the concept of characteristics
to (12), starting either from (7') or from quasi-linear systems (Courant and

Hilbert, 1962, pp. 170-173 and 424-427) leads to the characteristic equation

1]

(13) 0 = det {(aF/awx)wX + (aF/awy) ¥}

y
0, £, )
y y
(D E Wy;
y

After some computations, (13) can be written as

1
(=8
[}
Pt
————
L= (o)
=
> x
71 m
<
x
S
-
>
-+

. 2 _ 2 _
(13') (Zuy-f)wx + 2(vy-ux)wxwy (2vx+f)wy 0

For (13') not to have real solutions WX/Wy (or WY/WX) the discriminant A2 ,

2 2
(14) AT = (vy—ux) + (2vx+f)(2uy—f) ,
has to be negative, i.e., the ellipticity condition for (12) is

(15) £<o .

But, expanding and rearranging (14), we can put it into the form

(18) a2 =2e - 4 - §2

where we use
. 2, (12,2
- 2uxvy = (uX+vy) + (ux+vy) .
This finally yields the ellipticity condition for (4) as

2 2

(15") 2e - d” ~ f~ <0,
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which is the equivalent of (11') for (5). Indeed, the assumption

(=2}
1]

ds/dt = 0 ,

Q.
il

0, e = - fyu -Ap = e »

reduces (15') to the familiar ellipticity condition for the balance equation,
exactly as it reduced (4) to (5). Furthermore, condition (15') does not
contain any derivatives of u,v, just as (11') did not contain the second deriv-
atives of ¢ . This is of particular importance when actually trying to solve
(4) numerically, since difference quotients of a numerical solution are in
general poor approximations to the derivatives of the exact solution, even
though the solution of the difference equations might be a good approximation

to the solution of the differential equations,

In the case in which (15') is satisfied throughout the domain of interest
we can therefore expect a boundary-value problem such as that discussed for
(2.4) to be well-posed and to lead to at most two solutions (cf. our discussion
of (5))% By analogy to Rellich's results (Rellich, 1932, Proposition 2) for
(7), these two solutions would be easily distinguishable from each other and
only one of them could be physically significant under given conditions (in the
other one cyclones and anticyclones would be interchanged).

The major difficulty one might encounter in solving (4) is that of change
of type. It is well known from experience with (5) that for certain geopotential
data (11') is not satisfied, especially in regions of strong anticyclonic
activity. The same is to be expected of (4), since,in terms of a scale analysis
of (15'), e clearly dominates (e-el) - d2/2 over most of the earth.

The customary approach in solving (5) numerically when the data indicate

hyperbolicity has been to modify the data so that (11') is satisfied (Shuman, 1957,

*Heuristically two solutions are to be expected in fact because of (4b) being
quadratic in the derivatives of wu, v.
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Krishnamurti, 1968, Paegle and Paegle, 1974). This approach guaranteed that
the known mathematical theory of (7) be applicable and that the boundary-value
problem be well-posed; furthermore, elliptic difference operators could be used
to approximate (5) throughout the domain, which was convenient and efficient.
However, the numerical solutions thus obtained differed from observations con-
siderably, at least in the parts of the domain where the data had to be modified,
and they could not lead to over-all satisfactory results. We suggest a different
line of attack, motivated by recent advances in dealing with equations of mixed
type.

In the area of transonic gas dynamics equations of mixed type arise that
are linear (the Tricomi equation, Bers, 1958, p. 22) or quasi-linear, i.e., linear
in the highest derivatives (the Chaplygin equation, id., p. 14). In this area
a great deal of progress has been made lately in obtaining theoretical results
(ibid., Ch. 5 and Ch. 6, Garabedian, 1964, Sec. 12.1) as well as numerical solu-
tions (Murman and Cole, 1971, Jameson, 1975). In particular, it has been shown
that sd]utions of the Chaplygin equation with interior regions of hyperbolicity
(of supersonic flow) exist and can be computed efficiently by utilizing e]]ipfic
difference operators in the subsonic region and hyperbolic difference operators
in the supersonic region. This would seem to encourage investigations in which
the regions that are hyperbolic for system (4) (or for equation (5) for that
matter) are accounted for, rather than ignored. In this regard it seems that
physical intuition would support the well-posedness of the boundary-value problem
for (4), including the possibility of interior regions of hyperbolicity. The
heuristic argument relies on the compatibility of (4) with (1), putting at least
the well-posedness of the two systems on the same footing. Although the boundary
conditions under which the initial-and-boundary value problem for (1) is well-posed

are not known rigorously (they are for (2.1): Elvius and Sundstrbm, 1973),
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numerical experience and physical insight suggest thaf such conditions exist.
Unfortunately the same argument cannot be brought to bear on (5), since it is
not compatible with (1) in the sense discussed in the Introduction; neglecting
certain physically small terms in an equation might have far-reaching mathematical
consequences, as is well-known from the theory of boundary layers and of other
singular perturbation phenomena (Cole, 1968).

We conclude this section by pointing out that its results can be applied
to the primitive equations in isentropic coordinates (Eliassen and Kleinschmidt,

1957, pp. 26-27),

(16a) up +ouu, 4 vuy + Mx -fv=0 |,
(16b) Ve tuv F vvy + My + fu=0 |,
(16¢) M toum, o+ vny + n(ux+vy) =0

where M is the Montgomery potential,

M= +c¢cT ,
¢ p

with cp the specific heat at constant pressure. Here = 1is given by

T = 3p/3b ,

where 6 is the potential temperature,

1-1/x T,

6 = (p,/p)
and

Py = 1000mbar, «k = cp/cv s

with <, the specific heat at constant volume (id., p. 3). Indeed, (16) is
entirely similar to (1) with ¢ replaced by M 1in (1a) and (1b) and by =

in (1c); moreover knowledge of the mass field T, p, p implies knowledge of M
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and m in (16). Thus,letting now

® = logm ,

we obtain, in a manner entirely analogous to (4), the diagnostic system

(17a) u + vy = - QU - @yv -0

2 2
- = - + -
(17b) u + 2uyvX + vy + f(uy vx) fyu f(@xv ®yu)

+ d@t/dt + ud@x/dt + vd@y/dt

- (¢XMX+¢yMy) - MM,

to which the same discussion applies. As we indicated already, the study of

(1) and hence of (4) has research value with regard to properties of the primi-
tive equations in natural or in pressure coordinates. The study of (16) and hence
of (17) has even more immediate practical value, because of the usefulness of

(16) in meso-scale (short-range) weather prediction (Bleck, 1974).
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4. Diagnostic Equations for the Primitive-Equation Model

This model is currently believed to be the most useful in describing large-
scale motions of the atmosphere and different forms thereof are used in opera-
tional weather forecasting, as well as in research-oriented general circulation
models. It is closely related to the Euler equations of fluid dynamics,

du _ 1
(1la) =% = -B-px + fv,

dt
(1b) %%-= -%—py - fu,
(1c) g—%h%pz - g,
(1d) %% = -plu vyt ),
(te) & -o,

where d/dt 1is now the three-dimensional material derivative,
d/dt = 3/3t + ud/ox + v3/3y + wd/3z,
with z the vertical coordinate and w the corresponding velocity component.
For the sake of completeness we mention that the procedure of the previous

section immediately extends to (1), yielding for it the diagnostic system

(2a) u, + vy +w, = -du - ®yv - &,
(2b ] 2 2 2 4 + + + f(
(2b) u, + vy W, 2(uyvX v iy wxuz) uy - vx)
= f(@xv - Qyu)
+ d¢t/dt + ud@x/dt + vdéy/dt + wd@z/dt
- 2ap-go
p z’
(2¢) o u + eyv oW = -6,

Here A is the three-dimensional Laplacian,
A = 32/9x8 +3%73y2 +8 /322,
¢ = log p,

and

while f,g. are taken as constants for simplicity. For system (2) to be
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useful in determining (u,v,w) two thermodynamic variables, T and p,
say, have to be observable throughout the domain of interest. This is not
so unreasonable to require: it is still easier to measure one additional
scalar, p, rather than the three velocity components u,v,w. Hence (2)
could prove useful in the study of certain small-scale atmospheric phenomena
where vertical accelerations are not negligible, as well as in other areas
of fluid dynamics where system (1) arises and where temperature and pressure
measurements are easier to make than velocity measurements.

The same result holds for the full Navier-Stokes equations, only that
the equation corresponding to (2c) will contain derivatives of the velocity
components, instead of being purely algebraic in them (since in the equation
corresponding to (le) there is an energy dissipation term depending on velo-
city derivatives); also the equation corresponding to (2b) will be of order
higher than first (second or third according to whether the flow studied is
incompressible or compressible), but linear in the highest derivatives. Since
we have no immediate interest in these equations, we turn our attention now
to the primitive-equation model.

For simplicity we shall consider the primitive equations in pressure
coordinates and without dissipation or heating terms,

(3a) u, + vy +(Dp =0

1]

(3b) up +ouu, + vu, + wly - fv = -¢,,

(3c) Vit Uy, Fovvg oyt fu = - dys

(3d) Op + u6x + Vey + wb 0,

P

where 6 s potential temperature, ¢ is the geopotential of an isobaric
surface,

6 = 9z(x,y,p), p = const.,
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and o = dp/dt 1is the vertical velocity in this coordinate systém. The'

resalts below obtain also for' the equations in natural z-coordinates or in
o-coordinates. If heating and dissipation are present, and are eithef known

or depend on the velocity components and their spatial derivatives in a known
way, the same comments as for the Navier-Stokes equations apply: the correspond-
ing diagnostic equations will be more complicated than the ones below and possi-
bly of higher order, but instantaneous, synoptic determination of the velocity
field from the mass field is still possible.

We have now three velocity components, u,v,w, to determfne and need there-
fore three diagnostic equations. Obviously (3a) and (3d) are two such equations,
and we have to derive a third one. The basic idea will be again to start from
a divergence equation and eliminate the material derivative of the divergence
using the continuity equation. The procedure is less straightforward in the
case of system (3) than in the case of system (1) because of the asymmetric
way in which o appears in (3).

We introduce the horizontal divergence &,

§ = uy, + Vy’

and the material derivative d/dt corresponding to this coordinate system,
d/dt = 3/8t + ud/ox + vd/dy + wd/9p.

In this notation the divergence equation obtained from the momentum equations

(3b)s (3c) is

2 2 -
(4) ds/dt + uy + 2uv, vy tuun v, f(Vx-Uy) -0d.

From the continuity equation (3a), written as

3a’ . § = ’
(3a") w,
we have immediately

(5) -d§/dt = dub/dt.
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We shall use the energy equation (3d) to eliminate w,
(3d") w=- (8,u+ eyv + et)/ep»= -8'u - 8"v - 8",
with the obvious identifications

B = ex/ep, " = ey/ep, 6" = et/ep.

Thus, from (5) and (3d'), we have
(5') ds/dt

(d/dt)(e up+6 Vp+9pu+6pV+9p )

6'dup/dt + e“dvp/dt + (de'/dt) u, + (de"/dt)vp

+

i + 9" + 1 + I + " .
epdu/dt Gpdv/dt udep/dt Vdep/dt dep /dt

We can also write wy and wy appearing in (4) with the aid of (3d').

Furthermore, equations (3b) and 3c) yield

u,u u_w

= (fy- - - -
dup/dt (fv ¢x)p xUp UV, “p

- - + -
uyvp upvy fvp ¢xp,

(-fu—cby)p - UV, - Vv - Vo,

I

dv _/dt
vp/

“UpVy - vy - fup - ?yp’
where we used (3a) to express wp- Substituting this into (5') and the result
into (4) produces the missing diagnostic equation.

Notice that we use (3d) to eliminate the space derivatives of w, so that
we are left with a diagnostic system of two equations for the two horizontal

velocity components u,v,

- @8 + -an = [ + 8"y + g™
(6a) Uy = 8lug vy =BV, = Bu ¥ BV + o,

2 2
b + -5
(6b) Uy 2uyvX + vy B (uxup+2uyvp+upvy)

+2u v _+v. v.)

- 8" (U vprupv, Yy

+f(uy-vx)+{(e§—e;)v + e% -8 - fo }up

+{(en_e|)u + 6"

- (1]} + §
8y ¢ ey fo }vp
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=f(e;u-65v) - udea/dt - vdGS/dt - de; /dt

- Ap + (6'¢X + 9"¢y)p5
After solving (6) for u,v, we can obtain  immediately either from (3a)
or from (3d). Observe also that in the case in which all p derivatives are
zero, 9/9p = 0, system (6) reduces to the classical balance equation (3.5).

To solve (6), however, we need to know what a well-posed problem for it

is, i.e., which boundary conditions will ensure that the solution exists, is
unique and depends continuously on the data (mass-field data and boundary data).
The first step in that direction is to determine the type of system (6). This
is more difficult than for system (3.4) for two reasons: the first and obvious
one is that (6) is more complicated, viz.,more terms appear in the equations;
this is actually the less important one. The second reason is that, although
(6) has only two dependent variables, u and v, the same as (3.4), it has
one additional independent variable, p. It is well known that the analysis
of partial differential equations in more than two variables is considerably
harder (Courant and Hilbert, 1962, p.551 ff., Garabedian, 1964, p. 175 ff.),

since the geometric concepts involved-become more complex.

With a slight and obvious change from the notation of Section 3 we rewrite (6)
as
(7) F(X5YsPsW,W, oW W ) = 0.

X2y 'p

The equation that gives the characteristic surfaces
¥(x,y,p) = const.
of (7) will then be
= +
0 = det {(3F/ow,) ¥, * (aF/Bwy) ¥y (aF/awp)wp}.
Introducing the normal vector & of a characteristic surface
£ = (E1sEp:83) = (¥,u¥.¥),

-29-




the characteristic equation becomes

Du gl + Du gz + Du g3 DV gl + Dv Ep * Dv 53
(8) 0 = det X y p X y P
E g, +E E,+E ¢ E g, +E g, +E &
u -1 2 3 1 2 3
« uy u, vy vy v,
The expression in (8) represents a quadratic form in the three components

of &£, in the same way that the expression in (3.13) was a quadratic form in

the two variables Wx, Wy; we can write this form as

(9) ae) =3 4

Since we want to consider only real values of £, the coefficient matrix
A= (Aij) of this form can be taken, without loss of generality, to be sym-

metric,

Ay = Aji

The coefficients Aij are certain explicit functions of the known quantities
in (6), as well as of u, v and of their derivatives.

The necessary and sufficient condition for system (6) to be elliptic is
that the quadratic form (9) be definite (Courant and Hilbert, 1962, pp. 552-556
and pp. 579-581), i.e., that Q(£) be different from zero for non-zero £. The
system is hyperbolic iff (if and only if) there exists a non-singular linear
transformation, that is, a transformation given by a matrix (Bij) with non-
vanishing determinant, which, when gpp]ied to &,

E‘ = Z B:ins,
LIRS RN AN
will bring Q to the form
Qn) = - n% + ng + ng.
In terms of such a transformation, (6) is elliptic iff a non-singular matrix

(Bij) exists for which

Qn) = n% + ng + ng.
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ln two variab 11y, wnen the T1T0rm

Q(g) = 0(51,52) is really quadratic (eather than linear), consists in it

being once degenerate, i.e., reducible to

_ 2
Q(n) = ny.

At a point at which this were the case, system (3.4) would be parabolic; such
points, if they existed, would in general form the transition line between a
region of ellipticity and one of hyperbolicity: the so-called parabolic line
' (the sonic line in transonic gas dynamics). In three variables, however,
there exist other cases in which (6) is neither elliptic nor hyperbolic. In
particular one might have points at which (Bij) exists so that Q(&) takes

either one of the forms

Qn) = nf, Qn) = ni * ng, Qfn) = —n? + ng;

only in the second case can (6) be called parabolic. Furthermore such regions
might have finite volume in three-space, rather than reducing to a two-dimen-
sional surface which separates a region of ellipticity from one of hyperbolicity.
Using a different terminology, system (6) is degenerate iff the matrix A
has at least one zero eigenvalue, it is elliptic iff all the eigenvalues of
A are strictly of one sign (strictly positive, say) and it is hyperbolic iff
the eigenvalues of A are non-zero, but have different signs (one negative
and two positive, say). The eigenvalues X of A are the roots of its
characteristic polynomial,
P(A) = det(A-AI),
where 1 1is the 3x3 identity matrix. Hence system,(G) will be non-degenerate
iff matrix A is non—singu]ar,'i.e., iff the zeroth brder term-of‘P(A) is non-Zero,
det A#0.
System (6) will be elliptic iff A11 and A11A22 - A%z have the same sign as

det A (Hildebrand, 1965, pp. 50 - 52). Thus the ellipticity conditions for
(6) are
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(9a) Ajq det A >0,
2

. . c s 2
We have not succeeded in expressing the quantities All’ A11A22 - A12

and det A in terms of the right-hand sides of (6a),(6b) or in any other way that
does not depend on the derivatives of u,v. However, given a finite-difference
approximation to these derivatives, it is a straightforward, albeit lengthy,
computation to evaluate these quantities from the expressions for (Aij)
obtained by expanding (8).

We see that the situation is more complicated for system (3) than it was
for (3.1). Still system (6) represents a definite possibility for initializa-
tion by compatible balancing in a primitive-equation model. Numerous problems

in the implementation of the proposed procedure remain open: we shall briefly -

discuss some of them 1in the final section.
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5. Concluding Remarks

We have shown that the horizontal wind fiefd is synoptica11y determined
by the mass field and its first two time derivatives, at least in a number of
mathematical models describing the behavior of the atmosphere. The diagnostic
equations for the velocity field were in each case derived from the prognostic
equations of the model by purely mathematicaT ménipu1ations; we did not make
any additional physical assumptions Whithvwould involve the omission of certain
terms in the equations. Therefore; initiaiisfates with prescribed mass field,
and with the wind field given by the corresponding diagnostic équatﬁons, should
generate time-dependent solutions of the mode] under consideration in which the
features representing meteorologically significant phenomena predomfnate.

From the theoretical viewpoint, our results seem.to explain the partial
success of updating as well as the difficulties encouﬁtered. According to thé
analysis presented here, winds are determined by the mass fie]d and by_some
information contained in its past history; on the other hand,‘th§ ré1evant 1n-.ib
formation is not exploited in an optimal way by the updating techniques. We
feel that the systematic procedure for initialization by compatible b@]ancing

19 s : * : . s e w3 e-_ s
outlined here is an interesting alternative both to non-synoptic initializa-

w

tion and to more traditional synoptié techniques.

Two kinds of difficulties are to be expected in the bractipéi_imp]ementa-
tion of this approach to initialization: (a) observational, and (b) numerical.

(a) The observational difficulties have mainly to do with theAfact that
synoptic coverage of the mass fieid, though considerably bettef than that fok -
the wind field, is still not complete. Satellite coverage hés proved helpful,
but some problems in the processing of satellite data have proved to be‘more
serious than expected (Bengtsson, 1975). Part of these problems are also of a

mathematical nature, having to do with the ill-posedness of a certain integral
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equation; it is hoped that known techniques for dealing with such problems
could lead to the computation of better vertical temperature distributions
from satellite data.

(b) The numerical difficulties to be expected in this initialization
approach have to do basically with the discrepancy between the solutions of
numerical models and those of the mathematical models they approximate. The
wind field given by the solution of the proposed diagnostic differential
equations is compatible with the prescribed mass field with respect to the
differential equations of thevprognostic model; but in practice one can solve
only a set of difference equations which approximate the diagnostic equations
we derived. The problem then arises of obtaining diagnostic difference eqUa-_
tions directly from the prognostic difference equations of a given numerical
model. This task is facilitated by the fact that, in each model we discussed,
one of the equations of the diagnostic system was actually identical to one of
the equations of the prognostic system; taking the same discretized version of
this diagnostic equation for determining the wind field as is used in the time
integration of the prognostic numerical model will solve at 1éast parf of the
probiem. The second discrete equation may then also be obtained moré readf1y :
in a compatible way.

This approach to the numerical diffiéu]ties also suggests a‘so]ution to
the problem mentioned in Section 2 of calculating the required time derivatives
of the mass field from discrete (as opposed to continuous)_obserVations. Since
eventually the initialization will be done for a discrete model, it is natural
to take time differences instead of time derivatives. It is true tﬁat the time
intervals used in present explicit numerical models are of the order of minutes,
while synoptic maps are available at time intervals of the order of hours
(Bengtsson, 1975). On the other hand, we are interested in mass-field time-

difference information which is filtered so as to make the meteorologically
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significant phenomena dominant in the initial state obtained with the help of
this information. Therefore it is desirable for our purposes to take time
differences based on mass-field maps processed by standard synbptic procedures
from raw data, and available at time intervals characteristic of Changes in

the meteorologically significant large-scale motions of the atmosphere, rather
than at time intervals characteristic of changes in inertia-gravity wave motions.
There is certainly a need for investigations on optimum time intervals and
differencing methods for the time derivatives required by the initialization
method presented here.

The major problem, however, in implementing this method is that of con-
structing solutions of a nonlinear diagnostic system of mixed type, and of
devising numerical schemes for doing so which will be sufficiently efficient in
order to make the method practically useful. We hope to be able soon to report

on progress in this direction.
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